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We calculate the time evolution of a distribution function for a photon gas interacting with free elec-
trons in a strong magnetic field. Numerical solutions of the kinetic equation are presented including the
possibility of a Bose condensation if absorption processes are neglected; the structure of the final equilib-
rium solution is discussed. Only if the average photon energy is above the cyclotron energy does the
photon redistribution show a completely different dependence compared to the nonmagnetic case, due to

the resonant scattering process.

PACS number(s): 51.60.+a, 95.30.Jx, 05.70.Fh, 13.60.Fz

I. INTRODUCTION

The kinetics of a photon gas interacting with free elec-
trons has been investigated by a number of authors with
special emphasis on the Bose condensation of the photons
in a scattering dominated environment. Zel’dovich, and
Levich [1] showed that this condensation process can be
calculated in the framework of the Kompaneets equation
[2] where the photon-electron scattering is approximated
by a diffusion process in energy space. As a result, they
obtained an estimate for the finite condensation time
which depends on the initial photon spectrum. For large
occupation numbers a “shock front” in energy space de-
velops, shifting the excess photons towards lower fre-
quencies where they pile up at the lowest energy state
hv=0. Chapline, Cooper, and Slutz [3] give a numerical
solution of the kinetic equation. Coste and Peyraud [4]
considered the kinetics of the Bose condensation in some
detail, and they particularly discuss the structure of the
final stationary photon distribution. In all cases a spatial-
ly homogeneous and isotropic system has been assumed
where Compton scattering in the nonrelativistic limit is
the dominant photon-matter interaction process.

In the present paper we consider the photon kinetics
for the case of an external strong magnetic field. Such
fields (up to 10'3 G) occur close to the surface of magnet-
ic neutron stars, and the detection of cyclotron lines in
the spectra of x-ray pulsars (first discovered by Triimper
et al. [5]), has stimulated a large amount of work con-
cerning physical processes in these strong fields including
single and double Compton scattering, cyclotron emis-
sion, free-free emission, and pair creation. Since the mag-
netic field specifies a particular direction in space the sys-
tem is now no longer isotropic. In addition, the cross
sections depend on the photon polarization, and become
strongly energy dependent showing a resonance structure
at the cyclotron energy hvg=m,c?B/B, where
B, =4.41 X103 G is the critical magnetic-field strength.
The electrons can move freely along the field lines but oc-
cupy discrete energy states (the Landau levels) perpendic-
ular to the field (for details see [6]). It is obvious that the
modification of the cross sections with respect to the non-
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magnetic case will strongly alter the kinetics of the
scattering and condensation process, and we shall calcu-
late the time evolution of the photon-electron system nu-
merically.

II. THE KINETIC EQUATION
FOR STRONG MAGNETIC FIELDS

We consider the time evolution of a photon distribu-
tion in a spatially homogeneous fully ionized plasma in-
cluding a strong magnetic field in the z direction. The
ions are just needed as background particles for the sake
of charge neutrality. To simplify the entire calculation
we do not model the evolution of the electrons but as-
sume for all times a one-dimensional Maxwellian distri-
bution along the magnetic field with a constant tempera-
ture T,, and a population of the lowest Landau level only;
this requires kT, <<hvg. The electrons thus act as a heat
reservoir for the photon gas. The energy-momentum
transfer between the photons and the electrons is dom-
inated by Compton scattering provided the electron den-
sity is sufficiently low in order to ignore free-free emission
and absorption.

For the ratio of the typical scattering and the free-free
absorption time scales we get for Av <<kT

tSC _ O'ff ~10*4 n,
e O 10 c¢m 3
1f T cm
2
o | 5 kev 21 kev | o
kT, v |8

where 0,=6.65X107% cm?, n, is the electron density,
and g is an average Gaunt factor [7]. Considering evolu-
tion times for some given initial photon distribution
much larger than ¢, but shorter than ¢, the system is
scattering dominated; however, in the very-low-energy
regime this condition will always be violated, and pho-
tons will be absorbed and emitted by the bremsstrahlung
process.

Cyclotron absorption and emission can be treated as
scattering because of the extremely short lifetime of excit-
ed Landau states
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where f(z,v,u) is the polarization averaged photon occu-
pation number, f'=f(t,v',u’), and u denotes the cosine
of the propagation angle between the photon direction
and the magnetic field, i.e., the z direction. This equation
already includes the assumption that f is independent of
the azimuthal angle in the x-y plane. S(v,u—v',u’) is
the differential scattering probability for Compton
scattering from (v,u) to (v',u’) averaged over the given
electron distribution and over the photon polarization.
Obviously Eq. (3) conserves the photon number
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The differential scattering cross section has been calculat-
ed by Nagel [8] in the nonrelativistic limit Av <<m,c?,
kT, <<m,c? Tt shows a peak at v=+' with a thermal
width given by T,, and an additional strong cyclotron
resonance at a position given by the energy-momentum
balance of the scattering process.

Since S(v,u—+',u’) has this double-peak structure,
i.e., a resonance and a thermal peak, the energy change
per scattering |v—v'| /v is not necessarily small for all
energies, and it is therefore not possible to approximate
the scattering integral in the kinetic equation (3) by a
Fokker-Planck —type operator similar to the Kompaneets
equation with a diffusion coefficient depending on v and
T,. In the present work we use a slightly modified ver-
sion of the cross section by starting from the fully relativ-
istic expression derived by Herold [9], and then taking
the nonrelativistic limit. This leads to some correction
terms in the resonant part of the cross section due to the
electron recoil resulting in a shift of the position of the
cyclotron resonance peak. A plot of the total cross sec-
tion used in our numerical calculations is shown in Fig. 1.

It can be shown that S (v,u—+v',u’) fulfills a useful de-
tailed balance relation

2
'—hv)/k
SW,u' —v,u)= —:’— (hv / TeS(v,,u,—+v’,u'). (5)

Inserting this the kinetic equation (3) reads as
of _ o, ,r+1 a .
57—_-—.[0 dx f_ld,uS(x,y—»c N7

X[(1+f)f —e* 1+ 1)f'1, (6)

FIG. 1. The total cross section as a function of photon ener-
gy used in the numerical calculations. The four curves corre-
spond to different propagation angles with respect to the mag-
netic field (1:4=0.282; 2:4=0.618; 3:u=0.866; 4:u=0.989).
The electron temperature and the cyclotron frequency are 10
and 50 keV, respectively.

where x =hv/(kT,), § =27kT, /(hn,o +)S, and 7 is mea-
sured in units of the Thomson time scale t,,=1/(cn, o r).

II1I. THE SOLUTION OF THE KINETIC EQUATION

The kinetic equation (6) is solved numerically from a
given initial distribution fy(x,u)=f(t=0,x,u) to its
final asymptotic solution. In the following we first dis-
cuss some properties of this stationary solution, and then
present the numerical results in detail.

A. The stationary solution

For the discussion about possible equilibrium states we
consider the photon gas enclosed in a large box of finite
volume with reflecting walls. Making the linear dimen-
sions of the box sufficiently large we can still assume the
energy states to be continuous, however, we use the fact
that the lowest possible state (the ground state) now has a
finite energy x, > 0. Then the distribution

()= ——— )
S )= e* %—1
is obviously a stationary solution of the kinetic equation
(6) under the condition

xZ2xy>0; a<xg, (8)

where the chemical potential a is allowed to take a range
of positive values. For a=0 f(x) is the occupation num-
ber of the usual blackbody spectrum. The total photon
number density N reads as

3
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and since the photon number is conserved N is a constant
given by the initial distribution. We now consider the
transition x,—0. For a <0 this limit is straightforward,
3 .
0 e ja
3 <N(a=0)
j=1J

e

hc

N=16mw

3
§(3)=No ,

e

=1
6 e

(10)

where { is the Riemann § function. Inverting this yields
a=a(N) which completes the description of the station-
ary solution according to Eq. (7).

For 0 <a <x, the analysis has to be more careful. In
the limit of small x, we get the Euler summation formula
3

N =81 {x3[—In|np|+0O(1)]

he
+2x4[£(2)+O0(n1ny)]
+2[&3)+0 ()1}, (11)

where n=x,—a <<1. From that

al(N,xy)—x,
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which is a good approximation if
3
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and thus covers the case where the initial photon number
is larger than Ny=N(a=0). The distribution (7) then
shows a peak close to x =x, containing photons that
have undergone Bose condensation,

he 3N"No }

f(xg)=exp (14)

kT, 8mx3

and in the limit (xo—0) f(x,) diverges whereas the in-
tegral (9) over f(x) remains finite. In the regime x >>x,
x2f (x) resembles a Plancklike distribution with a=0.
Note that for the case N > N, the equilibrium solution
is obtained by first solving the kinetic Eq. (3) in the limit
t— oo for finite values of x, and then considering the
limiting case x,—0; these two limits are not interchang-
able. However, taking into account the absorption of
photons by the inverse bremsstrahlung process destroys
the peak of f(x) at x =x; in the limit x,—0, and will
therefore lead to an equilibrium distribution with a=0.

B. The solution of the time-dependent problem

In order to investigate the time evolution of the photon
distribution we start with an initial spectrum peaked
around some frequency x; with a width Ax

3873
f(t=0,x,u)
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where the angle-dependent factor ®(u) is normalized to
one, and for the total photon number density we have (as-
suming Ax <<x;)

ar [ Tax [ ldpx?f Ox =1 ; (16)
_ - |

thus, Bose condensation is expected to occur for N > N,,.
Because the scattering process contains a strong reso-
nance at the cyclotron frequency (see Fig. 1) the overall
time evolution will strongly depend on the position of the
initial peak with respect to vy, i.e., on the ratio x; /xp.

Figure 2 shows an example of a numerical calculation
with x;=1.95x5, and N <N,, i.e., almost all photons
have energies above the cyclotron frequency and above
the thermal maximum of the final distribution (note that
hvg>>kT,). In the nonmagnetic case the distribution
becomes isotropic much faster than it reaches the equilib-
rium in energy space; this is a consequence of the nonre-
lativistic nature of the scattering process. In a strong
magnetic field this is not always the case for all energies,
since the scattering time scale is drastically reduced
around the cyclotron resonance. As a result, the spec-
trum in this energy range rapidly converges to the equi-
librium (7). However, in the high-energy regime the dis-
tribution remains anisotropic on a longer time scale (see
Fig. 3).

Since the scattering cross section drops off steeply
below the Thomson value for low energies, photons will
pile up in the wing of the line and then slowly migrate to-
wards the final equilibrium. Therefore, with respect to
large time scales the case x; > xp is equivalent to a situa-
tion with an initially peaked distribution with x; <xjp and
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FIG. 2. Time evolution of x2f for an initial distribution
peaked above the cyclotron energy Avy =50 keV. The electron
temperature is 10 keV, and an initial anisotropy factor
®(u)=3/4(1—p?) was chosen, all curves are averaged over .
Different curves correspond to different evolution times in units
of t,.. The final stationary solution was obtained at ¢ =~ 5000¢,..
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FIG. 3. Frequency and angle dependence of x*f at t =1.8¢,, 0 -

for the calculation shown in Fig. 2.

an isotropic angle factor ®(u)=1. For x; <<xp the time
evolution resembles the nonmagnetic case because the
cross section depends only weakly on both energy and
direction. Then the scattering integral of the kinetic
equation (6) can be simplified by a Kompaneets operator
with a diffusion coefficient D depending on the electron
temperature and the magnetic field; for x <<xp

I (17

(note that in the nonmagnetic case D =x A corre-
sponding numerical example is shown in Fig. 4, where we
have chosen N > N,.

The given initial distribution will diffuse through fre-
quency space towards lower energies. First, the bulk of
the photons moves into the regime where the stationary
state of x2f (x) has its maximum, i.e., hv~1.6kT,, and
then on a large (but finite) time scale the low-energy pho-
tons will start condensating. Characterizing the actual
spectra in terms of the properties of the usual blackbody
radiation we can define a color temperature T, from the
maximum of x2f (x),

29f _ 9
X T a0 D(x,xp,T,)
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FIG. 4. Time evolution of x2f for an isotropic initial distri-
bution peaked below the cyclotron frequency vz =200 keV;
the electron temperature is 10 keV. For 2> 3000z,, photons
start condensating into the lowest possible energy scale.

1 hv (keV) 10 100

FIG. 5. The final states of the photon redistribution for the
calculation shown in Fig. 4. The brightness temperatures at
hv=10 keV for the curves 1,2,3 are T,=1.73T,, T,=1.57T,,
and 7,=1.33T,, respectively. The lowest-energy state is
hvpin=x0kT,=0.5 keV with kT,=10 keV. Curve 4 is a fit of
the equilibrium Eq. (7) to the calculated stationary solution
(dots) yielding a chemical potential @ =4.99995X 1072 in agree-
ment with Eq. (12). The lowest line is a Bose-Einstein distribu-
tion with a=0.

as well as a brightness temperature 7, by comparing
f (x) with the blackbody brightness at a fixed frequency

1
exTe/Tb_1

fx)= (19)

Thus, there is a certain time interval where 7, =<7, but
T, > T, (see Fig. 5), and the photon distribution therefore
contains an excess of photons (and energy) with respect
to the Bose-Einstein distribution with a=0. The final
distribution shown in Fig. 5 corresponds to the equilibri-
um spectrum (7) with the chemical potential from Eq.
(12), where the lowest-energy state x is equivalent to the
minimum grid point energy hv,;,=0.5 keV used in our
numerical calculation. Taking into account bremsstrah-
lung absorption would lead to a blackbody spectrum with
T,=T,=T,.

140
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FIG. 6. The condensation time Z. as a function of the initial
photon density N/N,. The dashed line is a fit to the data points
tc <N~!5. Electron temperature and cyclotron energy are 10
and 200 keV, respectively.
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From an analysis of the Kompaneets equation (17) with
an initial distribution (15) Coste and Peyraud [4] obtain
for the condensation time ¢,

tc<N~! (x;=const) . (20)

In the magnetic case, however, we used the complete
scattering integral (3) which leads to a slightly modified
function #-(N) (see Fig. 6)

tCOCN‘l'S (x,- <<xB) ’ (21)

and a typical value of ¢t for N=N, is

te=~10%,~5x10"1 (22)

n

102 ¢cm ™3 ]
—_— s

e

IV. SUMMARY

The resonant Compton scattering in a strong magnetic
field leads to a completely different time evolution of a
given photon spectrum compared to the nonmagnetic
case if most photons have energies above the cyclotron
frequency. Once the average photon energy is below this
value this difference becomes unimportant except for a
change of time scales. The calculations regarding the
process of Bose condensation are based on the assump-
tion of negligible bremsstrahlung absorption in order to
keep the photon number constant. Since this condition is
never fulfilled for low photon energies the solution for
t— o will not contain a condensed phase, but if the ab-
sorption rate is small a certain surplus of photons with
respect to the blackbody spectrum will show up tem-
porarily, and the magnitude of this excess depends on the
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initial photon number. This effect is extremely pro-
nounced in the case of low electron densities. On the oth-
er hand, once the density is so low that the radiation en-
ergy density exceeds the thermal energy density of the
plasma the assumption of a constant electron tempera-
ture cannot be justified. This condition, however, can in
principle be replaced by some other condition like a con-
stant total-energy density U=U_,+ U, of the plasma-
radiation system. If in the nonmagnetic case the radia-
tion is energetically dominant (U=U,) the electrons
have a Maxwellian distribution where the temperature is
adjusted by the Compton recoil on a time scale [10]

10 keV
kT,

4
m,c
¢ ~3x10~ M s .
UrUT

=

rec

In a magnetized plasma a similar argument holds if
kT, <<hwvpg; close to the cyclotron energy the electrons
do not necessarily have an equilibrium distribution for all
times because Compton scattering can lead to a Landau-
level transition with a subsequent emission of a cyclotron
photon. The discussion about the stationary solution
(Sec. IIT A) is still valid if T, is interpreted as the final
temperature in the limit  — . As an additional relation
one has for the radiation energy

4

U=U(T,,a,x,)=8rhc [ "x3f(x)dx
*0

he

and together with N(T,,a,x,) the temperature and the
chemical potential can be expressed in terms of the con-
stants of the system: T,(U,,N) and a(U,,N) (in the limit
xo—0); again, the case N > N, would lead to a condensa-
tion.
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